A Compiler Framework for Automatic Linearization and Efficient Discretization of Nonlinear Partial Differential Equations
نویسندگان
چکیده
The present paper addresses the use of high level languages, symbolic mathematical tools and code generation in an implementation of the finite element method, using a nonlinear hyperelasticity equation as example. Advantages of the software development method that will be demonstrated include closeness to the mathematics, enabling high human efficiency with easy to use high level languages, while still keeping a high computational efficiency by generating tailored inner loop code for the problem at hand. The application we have in mind for the equations presented here is the simulation of the passive elastic properties of heart and blood vessel tissue.
منابع مشابه
An inverse problem of identifying the coefficient of semilinear parabolic equation
In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...
متن کاملApplication of Laplace decomposition method for Burgers-Huxley and Burgers-Fisher equations
In this paper, we apply the Laplace decomposition method to obtain a series solutions of the Burgers-Huxley and Burgers-Fisher equations. The technique is based on the application of Laplace transform to nonlinear partial differential equations. The method does not need linearization, weak nonlinearity assumptions or perturbation theory and the nonlinear terms can be easily handled by using the...
متن کاملAn application of differential transform method for solving nonlinear optimal control problems
In this paper, we present a capable algorithm for solving a class of nonlinear optimal control problems (OCP's). The approach rest mainly on the differential transform method (DTM) which is one of the approximate methods. The DTM is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. Utilizing this approach, the optimal co...
متن کاملHomotopy Perturbation Method for Solving Partial Differential Equations
We apply a relatively new technique which is called the homotopy perturbation method (HPM) for solving linear and nonlinear partial differential equations. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are ...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009